Void Filling of Digital Elevation Models With Deep Generative Models
نویسندگان
چکیده
منابع مشابه
Learning Deep Generative Models
Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many artificial intelligence–related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architectures that ...
متن کاملAuxiliary Deep Generative Models
Deep generative models parameterized by neural networks have recently achieved state-ofthe-art performance in unsupervised and semisupervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave the generative model unchanged but make the variational distribution more expressive. Inspired by the structure...
متن کاملLearning Deep Generative Models
Learning Deep Generative Models Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many AI related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architec...
متن کاملAttacking Speaker Recognition With Deep Generative Models
In this paper we investigate the ability of generative adversarial networks (GANs) to synthesize spoofing attacks on modern speaker recognition systems. We first show that samples generated with SampleRNN and WaveNet are unable to fool a CNN-based speaker recognition system. We propose a modification of the Wasserstein GAN objective function to make use of data that is real but not from the cla...
متن کاملJoint Multimodal Learning with Deep Generative Models
We investigate deep generative models that can exchange multiple modalities bidirectionally, e.g., generating images from corresponding texts and vice versa. Recently, some studies handle multiple modalities on deep generative models, such as variational autoencoders (VAEs). However, these models typically assume that modalities are forced to have a conditioned relation, i.e., we can only gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2019
ISSN: 1545-598X,1558-0571
DOI: 10.1109/lgrs.2019.2902222